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Abstract—This paper explores the intersection of computer
science and finance, focusing on applying machine learning
methods and signal processing techniques to uncover the factors
influencing price changes in traded securities. This research
focuses on commodity futures, leveraging data sources such as
the Commissions of Traders Report by the CFTC to construct
a feature space. It aims to build a supervised learning problem
and employ ensemble learning techniques, such as decision tree-
based bagging classifier, to model and explain price changes in
commodity futures. Additionally, we will address critical details
involved in applying machine learning methods to financial prob-
lems. This includes techniques like triple barrier labeling, feature
importance analysis, systematic feature elimination and applying
information metrics. Results show that using the proposed data
sources to construct a dicision-tree based classifier do not result
in a model that is superior to a random classifier.

Index Terms—Decision Tree Classifier, Commodities, Future
Contracts

I. INTRODUCTION

THE integration of computer science and machine learn-

ing methods is rapidly gaining momentum in today’s

financial landscape, fueled by the increasing availability of

computational resources. This paradigm shift is particularly

relevant in addressing complex challenges in the financial

industry, particularly the development of profitable trading

models, which requires extensive research efforts. Central

to this research effort are the cutting-edge methodologies

proposed by De Prado in his books [1], [2], which provide

advanced tools and frameworks that serve as the basis for our

approach in this paper.

The complexity of financial markets requires a nuanced

understanding of the characteristics and underlying market

forces that drive price movements. To address this complex

landscape, we employ methods such as the decision tree

bagging classifier, triple barrier labeling, feature importance

methods, and information metrics. These techniques, grounded

in De Prado’s framework, enable our research to unravel

the subtleties inherent in financial data, opening the way for

informed financial modeling and building performant trading

models.

Our focus is on constructing a classifier that predicts move-

ments in gold futures prices using a variety of fundamental

data sources as features, since the futures market characterized

by its high liquidity has a rich set of recorded data. The

futures market, characterized by its centralized exchange and

voluminous trading contracts, provides not only an exemplary

problem for our research, but also an opportunity to explore

and refine computational models.

This paper is structured to comprehensively address the

challenges of constructing a classifier in the field of finance.

The subsequent Data section outlines the process of construct-

ing a coherent future price series, as well as the use of the

Commitment of Traders (COT) report, the application of an

oscillation filter, and the incorporation of a price momentum

indicator, leading to the construction of a well-defined feature

space. The model section details the use of a decision tree

bagging classifier, while the feature selection section details

the application of permutation feature importance and system-

atic elimination to refine the feature set. Results and Critical

Discussion follow, providing insight into the performance of

the model and engaging in analytical discourse. Finally, the

Conclusion section summarizes the key findings and outlines

avenues for future research.

II. DATA

Divided into Commodity Futures Prices, Commitment of

Traders Report, Oscillation Filter, Differencing and Standard

Scaler, each subsection shows the steps of data pre-processing

and representation that are critical to the subsequent modeling

and analysis phases.

A. Commodity Future Prices

Commodity futures are contracts that represent agreements

to buy or sell a specific commodity at a predetermined price

on a future date. Multiple contracts exist for the same under-

lying commodity, each corresponding to a different expiration

month, and are actively traded on the exchange at the same

time. This research focuses on a specific commodity, the gold

future (GC), with contract months spanning Feb, Apr, Jun,

Aug, Oct, and Dec. An important consideration in dealing

with commodity futures data is the management of contract

expirations. When a contract expires, the next year’s contract

for the same expiration month begins trading. In order to

construct a coherent single future time series for algorithm

training, the study adopts the ”nearest future continuation”

approach. Applying this approach on GC results in the price

series, shown in figure 1. In the nearest future method, the next

month’s contract is concatenated to the price series whenever

the previous month’s contract expires. While the nearest future

continuation method accurately reflects historical price levels,

it does have a limitation. It does not accurately reflect changes

in equity because it requires traders to roll positions - sell

an expiring contract and buy the next month’s contract. An

alternative approach, known as continuous spread-adjusted

future continuation, addresses this concern [3]. However, for
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This figure shows a coherent gold price series, derived by

using the nearest future continuation method.

Fig. 1. Gold Nearest Future Continuation

the sake of simplicity, this research chooses to adhere to the

”nearest future” method and neglect the changes in equity

resulting from the rolling process.

B. Commitment of Traders Report

The Commitment of Traders (COT) report, which is publicly

available on the Commodity Futures Trading Commission

(CFTC) website, serves as a resource that provides weekly

insights into the positioning of various categories of traders.

These include commercials (Comm), non-commercials (Non-

Comm) or institutional traders, and non-reportables (Non-

Rept). Commercials, often representing corporations, use fu-

tures to hedge their exposure to commodity price fluctuations

related to their production or consumption. In contrast, in-

stitutional investors typically take speculative positions, often

opposing those of the commercials. Non-reportable traders

include small traders who trade below the reportable volume

limit. These categories include both long and short positions,

as well as open interest, which represents the total num-

ber of contracts traded. Recognizing that this report reveals

fundamental aspects of market structure, this paper seeks to

determine whether such insights can be leveraged for trading

advantage. Consequently, these time series derived from the

COT report form the first part of the feature space in this

paper.

C. Oscillation Filter

The Stochastic Oscillator is used by traders to generate

signals that indicate overbought or oversold market conditions.

It measures the momentum of a given time series and provides

insight into trends and potential reversals. [4] The Oscillator

Value OSCk at a discrete point in time k is calculated using

the following formula, including the value of the underlying

time series pk, the high Hk,n, and respectively the low Lk,n,

within the past n days:

This figure shows an excerpt of the oscillation filter applied

on the open interest time series.

Fig. 2. Open Interest Oscillator

OSCk =
pk − Lk,n

Hk,n − Lk,n

(1)

This filter moves within the range of 0 to 1, ensuring a

standardized output. In this research, the oscillation filter is

applied to all time series extracted from the COT report, using

a lookback window of n = 730 days, which is an arbitrarily

chosen value, as signals from the COT report are expected to

be long-term in nature. As an example the oscillation filter

applied on the open interest time series is included and can

be retrieved from figure 2.

D. Moving Average Indicator

The Moving Average indicator is used to model price

momentum by taking the difference between two simples

moving averages (MA) of the same underlying price series,

each calculated with different rolling window sizes. In the

first step, the moving average with rolling window size n is

calculated as follows:

MAk =
1

k

n∑

i=n−k+1

pi (2)

To build the indicators in this study, MA100 (moving

average with window size n = 100 days) is subtracted from

MA200, which represents the short term price momentum

indicator. As a long term price momentum indicator, MA200

is substracted from MA500, both are shown in figure 3.

E. Feature Space Analysis

Before using our feature space in a learning algorithm, it is

important to consider potential interplay between our features.

Features that share similar information can induce substitution

effects that affect the results. For example, in methods such as

permutation feature importance that will be used later, if two

nearly identical features exist, their importance may be halved
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This figure shows both moving averages used to compute the

long term price momentum indicator. The underlying time

series from which the moving average derived is the gold

price future series.

Fig. 3. Simple Moving Averages

due to equal selection probability, leading to underestimation

[2]. To mitigate such effects and to ensure a robust analysis,

we perform a careful feature preselection, eliminating the

simultaneous use of highly correlated features. We assess

shared information through a two-part evaluation: a correlation

matrix analysis and an examination of information metric

variation.

The correlation matrix, shown in Figure 4, is calculated by

the standard correlation coefficient, also known as Pearson

correlation coefficient, between two features for each combina-

tion and provides a visual representation of the relationships

between the feature time series, which are sorted to reveal

blocks of high correlation. Although two blocks show up in

the correlation matrix, which show values between ±0.5, we

argue that these are not significantly high enough to indicate

substitution effects.

In scenarios where nonlinearity is prevalent, the variation

of information turns out to be a more appropriate distance

metric than the correlation measure. [2] This metric allows us

to address questions about the unique information provided

by a random variable, all without imposing specific functional

assumptions. Consider X a discrete random variable that takes

a value x from the set SX with probability p[x]. The entropy

of X is defined as

H[X] = −
∑

x∈SX

p[x]log[p[x]] (3)

The joint entropy of X and Y is

H[X,Y ] = −
∑

x,y∈SX×SY

p[x, y]log[p[x, y]] (4)

The conditional entropy is defined as

H[X|Y ] = H[X,Y ]−H[Y ] (5)

Fig. 4. Correlation Matrix

The mutual information is defined as the decrease in uncer-

tainty in X that results from knowing the value of Y:

I[X,Y ] = H[X]−H[X|Y ] = H[X] +H[Y ]−H[X,Y ] (6)

Now we can define and transform the equation of the variation

of information to

V I[X,Y ] = H[X|Y ] +H[Y |X] = H[X,Y ]− I[X,Y ] (7)

By standardizing the variation of information

Ṽ I[X,Y ] =
V I[X,Y ]

H[X,Y ]
= 1−

I[X,Y ]

H[X,Y ]
(8)

we bound it between zero and one, thus making it compare-

able. Further, variation of information is a metric because

it satisfies nonnegativity, symmetry V I[X,Y ] = V I[Y,X],
and the triangle inequality. The variation of information mea-

sure can be interpreted as the uncertainty we expect in one

variable when we know the value of the other. So, a lower

value indicates that more information is shared between both

variables. As seen in figure 5, all values are are higher then

approximately 0.8, thus one can argue that all features can be

used without the possibility of substitution effects.

III. MODEL

This section describes the approach used to construct a

predictive framework through supervised learning, employing

the decision tree bagging classifier as proposed in [1]. To

facilitate supervised learning, a critical prerequisite is the

derivation of labels from the future price series. Following

this, the model section discusses the choice of the decision

tree bagging classifier and shows its implementation in the

context of our research framework.

A. Triple Barrier Labeling

The triple barrier labeling technique, introduced in [1], is

particularly relevant to our research because of its significant
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Fig. 5. Variation of Information Matrix

similarity to the perspective of an investment professional, rep-

resenting a fundamental difference from the typical forecasting

problem in the prevalent literature. The three barriers include

two horizontal and one vertical barrier, each serving a specific

purpose in the labeling process. The profit-taking and stop-

loss targets dynamically define the horizontal barriers, and the

vertical time barrier represents an expiration limit based on the

number of bars that have passed since initiating the position. If

the upper barrier is touched first, the observation is labeled ”1”.

If the lower barrier is touched first, the observation is labeled ”-

1”. If the vertical barrier is touched first, we have two options:

Label the observation based on the sign of the outcome,

reflecting realized profit or loss, or label the observation as

”0,” indicating that the position resulted in neither profit nor

loss within the defined limits. Figure 6 shows an example how

one data point will be labeled according to the triple barrier

labeling technique.

In this paper, the profit-taking and stop-loss targets are

±15%, which is an arbitrarily chosen value. Furthermore,

for the sake of simplicity, no vertical time barrier is used.

Employing these parameters, figure 7 shows the accordingly

derived labels.

B. Decision Tree Bagging Classifier

The model employed in this paper is constructed using a

combination of the decision tree and the bagging classifier

from the well-known sklearn library, as shown in the listing

below. This approach is similar to Random Forests, although

it has distinct characteristics and advantages. Further insights

into their different strengths and properties are elaborated in

chapter 6.4 of [1].

Listing 1. Model Implementation

from s k l e a r n . t r e e i m p o r t
D e c i s i o n T r e e C l a s s i f i e r

from s k l e a r n . ensemble i m p o r t B a g g i n g C l a s s i f i e r

Fig. 6. Triple Barrier Labeling

Fig. 7. Derived Labels

c l f = D e c i s i o n T r e e C l a s s i f i e r ( c r i t e r i o n = ’
e n t r o p y ’ , m a x f e a t u r e s =1 , c l a s s w e i g h t = ’
ba l anced ’ , m i n w e i g h t f r a c t i o n l e a f =0)

c l f = B a g g i n g C l a s s i f i e r ( e s t i m a t o r = c l f ,
n e s t i m a t o r s =1000 , m a x f e a t u r e s =1 ,
max samples=avgU , o o b s c o r e = F a l s e )

In scenarios where a significant portion of the samples have

non-identically and independently distributed (non-IID) char-

acteristics, the problem of overfitting can persist. This is due

to the process of sampling with replacement, which results in

the construction of a significant number of essentially identical

decision trees. Unfortunately, this overfitting phenomenon is

a well-known weakness of decision trees, as each tree tends

to capture noise and irregularities in the data. In [1], solutions

for specific parameter settings are provided to counteract this

problem. An essential technique for dealing with non-IID

characteristics is to set the max_samples parameter of

the bagging classifier to the average label uniqueness. This

adjustment is critical because our label values are derived
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from different points in time, spanning different time intervals

that overlap. A detailed description of this approach can

be found in chapter 4 of [1], explaining how adjusting the

max_samples parameter to label uniqueness effectively

counteracts non-IID characteristics.

IV. FEATURE SELECTION

Based on the feature space derived in the Data section, the

primary goal of the Feature Selection section is to identify the

subset of features that optimally contribute to the construction

of a performant classifier. The method used for this evaluation

is Permutation Feature Importance, which assesses the impor-

tance of each feature within the classifier model. A systematic

elimination process is then applied to refine the feature set,

ensuring that the retained features collectively maximize the

performance of the classifier.

A. Permutation Feature Importance

Permutation Feature Importance (PFI) is a method for

assessing the importance of individual features within a su-

pervised learning model. The procedure begins by fitting the

bagging classifier, which serves as a baseline model, to the data

set. In this section, we use cross-entropy loss as the relevant

performance metric. The essential step in PFI is to isolate

each feature individually and shuffle its values, effectively

creating a randomized version of that particular feature while

keeping all other features intact. With this modified data set,

the bagging classifier is retrained to reflect its performance

when the original relationship between the feature and the

target variable is disrupted. By comparing the cross-entropy

loss of the new model L1 to the baseline model L0, we

calculate the feature importance value F as the difference in

cross-entropy loss
F = L0 − L1 (9)

which quantifies the impact of the shuffled feature on the

model’s predictive power. Thus, a positive feature importance

value means a drop in model performance after shuffling,

indicating that the shuffled feature contains important infor-

mation. It is important to note that using the 10-fold purged

cross-validation procedure, we obtain 10 feature importance

values per feature from which we derive mean and standard

deviation. The shuffling process is repeated for each feature

in each cross-validation step.

B. Systematic Feature Elimination

Starting with the initial feature space as presented in the

Data section, our systematic feature elimination process uses

permutation feature importance to measure the importance of

each feature within the classifier model. Iteratively, the feature

with the smallest negative importance is eliminated in each

cycle. This process continues until all features have importance

values greater than zero. It is important to note that while this

method refines the feature set to improve model performance,

it does not exhaustively explore all possible subsets of features

within the initial feature space. Given the computational cost

of evaluating every combination, our systematic elimination

strikes a balance between efficiency and model optimization.

Fig. 8. Feature Importance of the optimized Model

V. RESULTS AND DISCUSSION

After applying the feature selection methods described in

the previous section, the refined feature set includes MA500-

MA200, MA200-MA100, NonRept Short Osc, Comm Long

Osc. The feature importance means and standard deviations

are visually presented in Figure 8, where MA200-MA100

and Comm Long Osc have the highest feature importance,

although each feature is accompanied by a large standard de-

viation. After rerunning the model with the optimized feature

set, we evaluate the accuracy for each split within the cross-

validation procedure. The results show an average accuracy of

0.7684. This value seems high at the first look, nevertheless it

is not outstanding, since the labels derived by the triple barrier

labeling method consist of approximately 77% positive labels.

Thus a model that randomly picks 50% of the time a positive

label would still have an accuracy of 77% and the presented

model in this paper is not significantly better than a random

label picking model.

VI. CONCLUSION

In conclusion, this paper has undertaken a comprehensive

exploration of predictive modeling in the financial domain,

encompassing the construction of a classifier. The data section

begins with the construction of a coherent future price series,

integrating the Commitment of Traders (COT) report, an

oscillation filter, and a price momentum indicator to form

a well-defined feature space. Using a decision tree bagging

classifier, we navigated the complexities of modeling financial

data. The feature selection approach, using permutation feature

importance and systematic elimination, aimed to refine a set

of features for optimal model performance while keeping

computational cost low.

Despite achieving a notable accuracy value, it is important to

recognize that the model’s performance, does not exceed that

of a random classifier, although it is high. This discrepancy

suggests avenues for future research. Exploring alternative data

sources for features could reveal new insights, while investigat-

ing the explainability and economic implications of our results

adds depth to the interpretability of the model’s predictions.

Furthermore, extending the application of our approach to
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other commodities can provide valuable comparative insights

and contribute to the broader landscape of predictive modeling

in financial markets.
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